MetaheuristicsAlgorithms.AEFAMethod

References:

  • Yadav, Anupam.

"AEFA: Artificial electric field algorithm for global optimization." Swarm and Evolutionary Computation 48 (2019): 93-108.

source
MetaheuristicsAlgorithms.AEOMethod
AEO(npop, max_iter, lb, ub, objfun)

Artificial Ecosystem-based Optimization (AEO) algorithm implementation in Julia.

Arguments:

  • npop: Number of individuals in the population.
  • max_iter: Maximum number of iterations.
  • lb: Lower bounds for the search space.
  • ub: Upper bounds for the search space.
  • objfun: Function to evaluate the fitness of individuals.

Returns:

  • AEOResult: A struct containing:
    • BestF: The best fitness value found.
    • BestX: The position corresponding to the best fitness.
    • his_best_fit: A vector of best fitness values at each iteration.

References:

  • Zhao, Weiguo, Liying Wang, and Zhenxing Zhang. "Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm." Neural Computing and Applications 32, no. 13 (2020): 9383-9425.
source
MetaheuristicsAlgorithms.AFTMethod
AFT(noThieves, max_iter, lb, ub, objfun)

The Ali Baba and the Forty Thieves (AFT) algorithm is a meta-heuristic optimization algorithm inspired by the story of Ali Baba and the Forty Thieves. It is designed to solve numerical optimization problems by simulating the behavior of thieves searching for treasures.

Arguments:

  • noThieves: Number of thieves in the algorithm.
  • max_iter: Maximum number of iterations.
  • lb: Lower bounds for the search space.
  • ub: Upper bounds for the search space.
  • objfun: Objective function to evaluate the fitness of solutions.

Returns:

  • AFTResult: A struct containing:
    • fitness: The best fitness value found.
    • gbest: The position corresponding to the best fitness.
    • ccurve: A vector of best fitness values at each iteration.

References:

  • Braik, Malik, Mohammad Hashem Ryalat, and Hussein Al-Zoubi. "A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves." Neural Computing and Applications 34, no. 1 (2022): 409-455.
source
MetaheuristicsAlgorithms.AHAMethod
AHA(npop, max_iter, lb, ub, objfun)

The Artificial Hummingbird Algorithm (AHA) is a meta-heuristic optimization algorithm inspired by the foraging behavior of hummingbirds. It is designed to solve numerical optimization problems by simulating the way hummingbirds search for food.

Arguments:

  • npop: Number of hummingbirds (population size).
  • max_iter: Maximum number of iterations.
  • lb: Lower bounds for the search space.
  • ub: Upper bounds for the search space.
  • objfun: Objective function to evaluate the fitness of solutions.

Returns:

  • AHAResult: A struct containing:
    • BestF: The best fitness value found.
    • BestX: The position corresponding to the best fitness.
    • HisBestFit: A vector of best fitness values at each iteration.

References:

  • Zhao, Weiguo, Liying Wang, and Seyedali Mirjalili. "Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications." Computer Methods in Applied Mechanics and Engineering 388 (2022): 114194.
source
MetaheuristicsAlgorithms.ALAMethod

References:

  • Xiao, Y., Cui, H., Khurma, R. A., & Castillo, P. A. (2025). Artificial lemming algorithm: a novel bionic meta-heuristic technique for solving real-world engineering optimization problems. Artificial Intelligence Review, 58(3), 84.
source
MetaheuristicsAlgorithms.AOArithmeticMethod

References:

  • Abualigah, Laith, Ali Diabat, Seyedali Mirjalili, Mohamed Abd Elaziz, and Amir H. Gandomi. "The arithmetic optimization algorithm." Computer methods in applied mechanics and engineering 376 (2021): 113609.
source
MetaheuristicsAlgorithms.APOMethod

References:

  • Wang, Xiaopeng, Václav Snášel, Seyedali Mirjalili, Jeng-Shyang Pan, Lingping Kong, and Hisham A. Shehadeh. "Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization." Knowledge-Based Systems 295 (2024): 111737.
source
MetaheuristicsAlgorithms.AROMethod

References:

  • Wang, Liying, Qingjiao Cao, Zhenxing Zhang, Seyedali Mirjalili, and Weiguo Zhao. "Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems." Engineering Applications of Artificial Intelligence 114 (2022): 105082.
source
MetaheuristicsAlgorithms.AVOAMethod

References:

  • Abdollahzadeh, B., Gharehchopogh, F. S., & Mirjalili, S. (2021). African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering, 158, 107408.
source
MetaheuristicsAlgorithms.ArtemisininOMethod

References:

  • Yuan, Chong, Dong Zhao, Ali Asghar Heidari, Lei Liu, Yi Chen, Zongda Wu, and Huiling Chen. "Artemisinin optimization based on malaria therapy: Algorithm and applications to medical image segmentation." Displays 84 (2024): 102740.
source
MetaheuristicsAlgorithms.BESMethod

References:

  • Alsattar, Hassan A., A. A. Zaidan, and B. B. Zaidan.

"Novel meta-heuristic bald eagle search optimisation algorithm." Artificial Intelligence Review 53 (2020): 2237-2264.

source
MetaheuristicsAlgorithms.BKAMethod

References:

  • Wang, Jun, Wen-chuan Wang, Xiao-xue Hu, Lin Qiu, and Hong-fei Zang.

"Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems." Artificial Intelligence Review 57, no. 4 (2024): 98.

source
MetaheuristicsAlgorithms.BOMethod

References:

  • Das, Amit Kumar, and Dilip Kumar Pratihar. "Bonobo optimizer (BO): an intelligent heuristic with self-adjusting parameters over continuous spaces and its applications to engineering problems." Applied Intelligence 52, no. 3 (2022): 2942-2974.
source
MetaheuristicsAlgorithms.BOAMethod

References:

  • Arora, Sankalap, and Satvir Singh. "Butterfly optimization algorithm: a novel approach for global optimization." Soft computing 23 (2019): 715-734.
source
MetaheuristicsAlgorithms.CDOMethod

References:

  • Shehadeh, Hisham A. "Chernobyl disaster optimizer (CDO): A novel meta-heuristic method for global optimization." Neural Computing and Applications 35, no. 15 (2023): 10733-10749.
source
MetaheuristicsAlgorithms.COMethod

References:

  • Akbari, Mohammad Amin, Mohsen Zare, Rasoul Azizipanah-Abarghooee, Seyedali Mirjalili, and Mohamed Deriche. "The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems." Scientific reports 12, no. 1 (2022): 10953.
source
MetaheuristicsAlgorithms.COOTMethod

References:

  • Naruei, Iraj, and Farshid Keynia. "A new optimization method based on COOT bird natural life model." Expert Systems with Applications 183 (2021): 115352.
source
MetaheuristicsAlgorithms.CSBOMethod

References:

  • Ghasemi, Mojtaba, Mohammad-Amin Akbari, Changhyun Jun, Sayed M. Bateni, Mohsen Zare, Amir Zahedi, Hao-Ting Pai, Shahab S. Band, Massoud Moslehpour, and Kwok-Wing Chau. "Circulatory System Based Optimization (CSBO): an expert multilevel biologically inspired meta-heuristic algorithm." Engineering Applications of Computational Fluid Mechanics 16, no. 1 (2022): 1483-1525.
source
MetaheuristicsAlgorithms.CapSAMethod

References:

  • Braik, Malik, Alaa Sheta, and Heba Al-Hiary. "A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm." Neural computing and applications 33, no. 7 (2021): 2515-2547.
source
MetaheuristicsAlgorithms.ChOAMethod

References:

  • Khishe, Mohammad, and Mohammad Reza Mosavi. "Chimp optimization algorithm." Expert systems with applications 149 (2020): 113338.
source
MetaheuristicsAlgorithms.ChameleonSAMethod

References:

  • Braik, Malik Shehadeh. "Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems." Expert Systems with Applications 174 (2021): 114685.
source
MetaheuristicsAlgorithms.CoatiOAMethod

References:

  • Braik, Malik, Alaa Sheta, and Heba Al-Hiary. "A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm." Neural computing and applications 33, no. 7 (2021): 2515-2547.
source
MetaheuristicsAlgorithms.DBOMethod

References:

  • Xue J, Shen B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. The Journal of Supercomputing. 2023 May;79(7):7305-36.
source
MetaheuristicsAlgorithms.DDAOMethod

References:

  • Ghafil, H. N., & Jármai, K. (2020). Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering applications. Applied Soft Computing, 93, 106392.
source
MetaheuristicsAlgorithms.DMOAMethod

References:

  • Agushaka, Jeffrey O., Absalom E. Ezugwu, and Laith Abualigah. "Dwarf mongoose optimization algorithm." Computer methods in applied mechanics and engineering 391 (2022): 114570.
source
MetaheuristicsAlgorithms.DOMethod

References:

  • Zhao, Shijie, Tianran Zhang, Shilin Ma, and Miao Chen. "Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications." Engineering Applications of Artificial Intelligence 114 (2022): 105075.
source
MetaheuristicsAlgorithms.DSOMethod
DSO(npop, max_iter, lb, ub, dim, objfun)

The Deep Sleep Optimiser (DSO) is a human-inspired metaheuristic optimization algorithm that mimics the sleep patterns of humans to find optimal solutions in various optimization problems.

Arguments:

  • npop: Number of search agents (population size).
  • max_iter: Number of iterations (generations).
  • lb: Lower bounds of the search space.
  • ub: Upper bounds of the search space.
  • objfun: Objective function to be minimized.

Returns:

  • ::DSOResult: A struct containing:
    • Best_Cost: The best cost found during the optimization.
    • Best_Position: The position corresponding to the best cost.
    • Best_iteration: A vector of best costs at each iteration.

References:

  • Oladejo, Sunday O., Stephen O. Ekwe, Lateef A. Akinyemi, and Seyedali A. Mirjalili, The deep sleep optimiser: A human-based metaheuristic approach., IEEE Access (2023).
source
MetaheuristicsAlgorithms.ECOMethod

References:

  • Lian, Junbo, Ting Zhu, Ling Ma, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen, and Guohua Hui.

"The educational competition optimizer." International Journal of Systems Science 55, no. 15 (2024): 3185-3222.

source
MetaheuristicsAlgorithms.EDOMethod

References:

  • Abdel-Basset, Mohamed, Doaa El-Shahat, Mohammed Jameel, and Mohamed Abouhawwash.

"Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems." Artificial Intelligence Review 56, no. 9 (2023): 9329-9400.

source
MetaheuristicsAlgorithms.EOMethod

References:

  • Faramarzi, Afshin, Mohammad Heidarinejad, Brent Stephens, and Seyedali Mirjalili.

"Equilibrium optimizer: A novel optimization algorithm." Knowledge-based systems 191 (2020): 105190.

source
MetaheuristicsAlgorithms.ESCMethod

References:

  • Ouyang, K., Fu, S., Chen, Y., Cai, Q., Heidari, A. A., & Chen, H. (2024).

Escape: an optimization method based on crowd evacuation behaviors. Artificial Intelligence Review, 58(1), 19.

source
MetaheuristicsAlgorithms.ETOMethod

References:

  • Luan, Tran Minh, Samir Khatir, Minh Thi Tran, Bernard De Baets, and Thanh Cuong-Le.

"Exponential-trigonometric optimization algorithm for solving complicated engineering problems." Computer Methods in Applied Mechanics and Engineering 432 (2024): 117411.

source
MetaheuristicsAlgorithms.ElkHOMethod

References:

  • Al-Betar, M.A., Awadallah, M.A., Braik, M.S. et al.

Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artif Intell Rev 57, 48 (2024). https://doi.org/10.1007/s10462-023-10680-4

source
MetaheuristicsAlgorithms.Engineering_F1Method
F1(x::Vector{Float64}) -> Float64

Tension/Compression Spring Design Optimization.

Minimizes the weight of a tension/compression spring subject to constraints on shear stress, surge frequency, minimum deflection, and geometric limits.

Problem Source

A well-known benchmark in constrained engineering design, commonly used in metaheuristic optimization literature.

Variables

  • x[1]: Wire diameter (d)
  • x[2]: Mean coil diameter (D)
  • x[3]: Number of active coils (N)

Constraints

Four nonlinear inequality constraints:

  • Shear stress constraint
  • Surge frequency constraint
  • Minimum deflection constraint
  • Geometry-related limits

Returns

  • Penalized objective function value (Float64)
source
MetaheuristicsAlgorithms.Engineering_F2Method
F2(x::Vector{Float64}) -> Float64

Pressure Vessel Design Optimization.

Minimizes the total cost of a cylindrical pressure vessel, which includes material, forming, and welding costs, subject to constraints on thickness, volume, and stress.

Problem Source

A classical benchmark problem in constrained engineering design, widely used in metaheuristic algorithm evaluations.

Variables

  • x[1]: Thickness of the shell (Ts)
  • x[2]: Thickness of the head (Th)
  • x[3]: Inner radius (R)
  • x[4]: Length of the cylindrical section without head (L)

Constraints

Four nonlinear inequality constraints:

  • Stress constraints on thickness
  • Volume constraint
  • Geometrical bounds

Returns

  • Penalized objective function value (Float64)
source
MetaheuristicsAlgorithms.Engineering_F3Method
Engineering_F3(x::Vector{Float64}) -> Float64

Welded Beam Design Optimization Problem.

Minimizes the cost of a welded beam subject to constraints on shear stress, normal stress, deflection, and geometric properties.

Objective

\[\vec{z} = [z_1, z_2, z_3, z_4] = [h, l, t, b] \\ min_{\vec{z}} f(\vec{z}) = 1.10471 z_1^2 z_2 + 0.04811 z_3 z_4 (14 + z_2)\]

Constraints

\[\begin{aligned} g_1(\vec{z}) &= \tau(z) - \tau_{\max} \leq 0 \\ g_2(\vec{z}) &= \sigma(z) - \sigma_{\max} \leq 0 \\ g_3(\vec{z}) &= z_1 - z_4 \leq 0 \\ g_4(\vec{z}) &= 0.10471 z_1^2 + 0.04811 z_3 z_4 (14 + z_2) - 5 \leq 0 \\ g_5(\vec{z}) &= 0.125 - z_1 \leq 0 \\ g_6(\vec{z}) &= \delta(z) - \delta_{\max} \leq 0 \\ g_7(\vec{z}) &= P - P_c(z) \leq 0 \end{aligned}\]

Definitions

\[\tau(z) = \sqrt{(\tau')^2 + 2\tau'\tau''\frac{z_2}{2R} + (\tau'')^2},\quad \tau' = \frac{P}{\sqrt{2} z_1 z_2},\quad \tau'' = \frac{MR}{J}\]

\[M = P \left( L + \frac{z_2}{2} \right),\quad R = \sqrt{ \frac{z_2^2}{4} + \left( \frac{z_1 + z_3}{2} \right)^2 }\]

\[J = 2 \sqrt{2} z_1 z_2 \left[ \frac{z_2^2}{12} + \left( \frac{z_1 + z_3}{2} \right)^2 \right]\]

\[\sigma(z) = \frac{6PL}{z_4 z_3^2},\quad \delta(z) = \frac{4PL^3}{E z_3^3 z_4}\]

\[P_c(z) = \frac{4.013 E \sqrt{z_3^2 z_4^5 / 36}}{L^2} \left( 1 - \frac{z_3}{2L} \sqrt{\frac{E}{4G}} \right)\]

Constants

  • P = 6000 lb
  • L = 14 in
  • E = 30×10⁶ psi
  • G = 12×10⁶ psi
  • τₘₐₓ = 13600 psi
  • σₘₐₓ = 30000 psi
  • δₘₐₓ = 0.25 in

Decision Variables

  • x[1] = z₁: Thickness of weld (h)
  • x[2] = z₂: Length of weld (l)
  • x[3] = z₃: Height of beam (t)
  • x[4] = z₄: Width of beam (b)

Returns

  • Penalized objective function value (Float64)
source
MetaheuristicsAlgorithms.Engineering_F4Method
F4(x::Vector{Float64}) -> Float64

Speed Reducer Design Optimization.

Minimizes the weight of a speed reducer subject to constraints on bending stress, surface stress, transverse deflections, and geometry.

Problem Source

A standard benchmark problem in engineering design, commonly used to test constrained optimization algorithms.

Variables

  • x[1]: Face width (in)
  • x[2]: Module of teeth (in)
  • x[3]: Number of teeth
  • x[4]: Length of the first shaft between bearings (in)
  • x[5]: Length of the second shaft between bearings (in)
  • x[6]: Diameter of the first shaft (in)
  • x[7]: Diameter of the second shaft (in)

Constraints

  • Bending stress
  • Surface stress
  • Deflection of shafts
  • Geometric and design constraints
  • Seven nonlinear inequality constraints in total

Returns

  • Penalized objective function value (Float64)
source
MetaheuristicsAlgorithms.Engineering_F5Method
F5(x::Vector{Float64}) -> Float64

Gear Train Design Optimization.

Minimizes the error between an actual and a desired gear ratio in a simple four-gear train. All variables must be integers.

Problem Source

A discrete constrained engineering design problem widely used to evaluate optimization algorithms that handle integer variables.

Variables

  • x[1]: Number of teeth on gear 1 (integer)
  • x[2]: Number of teeth on gear 2 (integer)
  • x[3]: Number of teeth on gear 3 (integer)
  • x[4]: Number of teeth on gear 4 (integer)

Constraints

  • Each variable must be an integer in the range [12, 60]
  • The gear ratio error must be minimized

Returns

  • Squared error between actual and desired gear ratio (Float64)
source
MetaheuristicsAlgorithms.Engineering_F6Method
F6(x::Vector{Float64}) -> Float64

Three-Bar Truss Design Optimization.

Minimizes the weight of a three-bar truss structure subject to stress and displacement constraints.

Problem Source

A classical structural optimization benchmark problem used in metaheuristic algorithm research.

Variables

  • x[1]: Cross-sectional area of the first bar (continuous)
  • x[2]: Cross-sectional area of the second bar (continuous)

Constraints

  • Stress in each member must not exceed allowable limits
  • Displacement constraints on the structure
  • Variable bounds typically in the range [0.1, 10]

Returns

  • Penalized objective function value (Float64) representing the weight of the truss
source
MetaheuristicsAlgorithms.Engineering_F7Method
F7(x::Vector{Float64}) -> Float64

Rolling Element Bearing Design Optimization.

Minimizes the bearing’s weight subject to constraints on stress, deflection, and geometry.

Problem Source

A standard constrained engineering design problem often used to benchmark metaheuristic algorithms.

Variables

  • x[1]: Bearing inner radius
  • x[2]: Bearing outer radius
  • x[3]: Width of the bearing
  • x[4]: Shaft diameter
  • x[5]: Number of rolling elements

Constraints

  • Stress limits on the bearing components
  • Deflection limits
  • Geometric and manufacturing constraints

Returns

  • Penalized objective function value (Float64) reflecting the bearing weight or cost
source
MetaheuristicsAlgorithms.Engineering_F8Method
F8(x::Vector{Float64}) -> Float64

Cantilever Beam Design Optimization.

Minimizes the weight of a cantilever beam subject to constraints on bending stress, deflection, and geometric dimensions.

Problem Source

A classical constrained engineering design problem used in metaheuristic algorithm research.

Variables

  • x[1]: Width of the beam cross-section
  • x[2]: Height of the beam cross-section
  • x[3]: Length of the beam segment 1
  • x[4]: Length of the beam segment 2
  • x[5]: Length of the beam segment 3
  • x[6]: Length of the beam segment 4

Constraints

  • Maximum bending stress constraints
  • Deflection limits at the beam’s free end
  • Geometric bounds on variables

Returns

  • Penalized objective function value (Float64), representing the beam weight
source
MetaheuristicsAlgorithms.Engineering_F9Method
F9(x::Vector{Float64}) -> Float64

I-Beam Deflection Optimization.

Minimizes the weight of an I-beam subject to constraints on bending stress, shear stress, and deflection under load.

Problem Source

A classical engineering design benchmark widely used in metaheuristic algorithm literature.

Variables

  • x[1]: Web height
  • x[2]: Flange width
  • x[3]: Web thickness
  • x[4]: Flange thickness

Constraints

  • Bending stress limits
  • Shear stress limits
  • Maximum deflection allowed
  • Geometric constraints

Returns

  • Penalized objective function value (Float64), representing the beam weight
source
MetaheuristicsAlgorithms.FATAMethod

References:

  • Qi, Ailiang, Dong Zhao, Ali Asghar Heidari, Lei Liu, Yi Chen, and Huiling Chen.

"FATA: an efficient optimization method based on geophysics." Neurocomputing 607 (2024): 128289.

source
MetaheuristicsAlgorithms.FLAMethod

References:

  • Hashim, Fatma A., Reham R. Mostafa, Abdelazim G. Hussien, Seyedali Mirjalili, and Karam M. Sallam.

"Fick's Law Algorithm: A physical law-based algorithm for numerical optimization." Knowledge-Based Systems 260 (2023): 110146.

source
MetaheuristicsAlgorithms.FLoodAMethod

References:

  • Ghasemi, M., Golalipour, K., Zare, M., Mirjalili, S., Trojovský, P., Abualigah, L. and Hemmati, R., 2024.

Flood algorithm (FLA): an efficient inspired meta-heuristic for engineering optimization. The Journal of Supercomputing, 80(15), pp.22913-23017.

source
MetaheuristicsAlgorithms.FOXMethod

References:

  • Mohammed, Hardi, and Tarik Rashid.

"FOX: a FOX-inspired optimization algorithm." Applied Intelligence 53, no. 1 (2023): 1030-1050.

source
MetaheuristicsAlgorithms.GBOMethod

References:

  • Ahmadianfar, Iman, Omid Bozorg-Haddad, and Xuefeng Chu.

"Gradient-based optimizer: A new metaheuristic optimization algorithm." Information Sciences 540 (2020): 131-159.

source
MetaheuristicsAlgorithms.GEAMethod

References:

  • Ghasemi, Mojtaba, Mohsen Zare, Amir Zahedi, Mohammad-Amin Akbari, Seyedali Mirjalili, and Laith Abualigah.

"Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization." Journal of Bionic Engineering 21, no. 1 (2024): 374-408.

source
MetaheuristicsAlgorithms.GGOMethod

References:

  • El-Kenawy, El-Sayed M., Nima Khodadadi, Seyedali Mirjalili, Abdelaziz A. Abdelhamid, Marwa M. Eid, and Abdelhameed Ibrahim.

"Greylag goose optimization: nature-inspired optimization algorithm." Expert Systems with Applications 238 (2024): 122147.

source
MetaheuristicsAlgorithms.GJOMethod

References:

  • Chopra, Nitish, and Muhammad Mohsin Ansari.

"Golden jackal optimization: A novel nature-inspired optimizer for engineering applications." Expert Systems with Applications 198 (2022): 116924.

source
MetaheuristicsAlgorithms.GKSOMethod

References:

  • Hu, Gang, Yuxuan Guo, Guo Wei, and Laith Abualigah.

"Genghis Khan shark optimizer: a novel nature-inspired algorithm for engineering optimization." Advanced Engineering Informatics 58 (2023): 102210.

source
MetaheuristicsAlgorithms.GNDOMethod

References:

  • Zhang, Yiying, Zhigang Jin, and Seyedali Mirjalili.

"Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models." Energy Conversion and Management 224 (2020): 113301.

source
MetaheuristicsAlgorithms.GOMethod

References:

  • Zhang, Qingke, Hao Gao, Zhi-Hui Zhan, Junqing Li, and Huaxiang Zhang.

"Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems." Knowledge-Based Systems 261 (2023): 110206.

source
MetaheuristicsAlgorithms.GOAMethod

References:

  • Saremi, Shahrzad, Seyedali Mirjalili, and Andrew Lewis.

"Grasshopper optimisation algorithm: theory and application." Advances in engineering software 105 (2017): 30-47.

source
MetaheuristicsAlgorithms.GTOMethod

References:

  • Abdollahzadeh, Benyamin, Farhad Soleimanian Gharehchopogh, and Seyedali Mirjalili.

"Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems." International Journal of Intelligent Systems 36, no. 10 (2021): 5887-5958.

source
MetaheuristicsAlgorithms.GWOMethod

References:

  • Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis.

"Grey wolf optimizer." Advances in engineering software 69 (2014): 46-61.

source
MetaheuristicsAlgorithms.GazelleOAMethod

References:

  • Agushaka, Jeffrey O., Absalom E. Ezugwu, and Laith Abualigah.

"Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer." Neural Computing and Applications 35, no. 5 (2023): 4099-4131.

source
MetaheuristicsAlgorithms.HBAMethod

References:

  • Hashim, Fatma A., Essam H. Houssein, Kashif Hussain, Mai S. Mabrouk, and Walid Al-Atabany.

"Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems." Mathematics and Computers in Simulation 192 (2022): 84-110.

source
MetaheuristicsAlgorithms.HBOMethod

References:

  • Askari, Qamar, Mehreen Saeed, and Irfan Younas.

"Heap-based optimizer inspired by corporate rank hierarchy for global optimization." Expert Systems with Applications 161 (2020): 113702.

source
MetaheuristicsAlgorithms.HEOAMethod

References:

  • Lian, Junbo, and Guohua Hui.

"Human evolutionary optimization algorithm." Expert Systems with Applications 241 (2024): 122638.

source
MetaheuristicsAlgorithms.HGSMethod

References:

  • Yang, Yutao, Huiling Chen, Ali Asghar Heidari, and Amir H. Gandomi.

"Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts." Expert Systems with Applications 177 (2021): 114864.

source
MetaheuristicsAlgorithms.HGSOMethod

References:

  • Hashim, F.A., Houssein, E.H., Mabrouk, M.S., Al-Atabany, W. and Mirjalili, S., 2019.

Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, pp.646-667.

source
MetaheuristicsAlgorithms.HHOMethod

References:

  • Heidari, Ali Asghar, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, and Huiling Chen.

"Harris hawks optimization: Algorithm and applications." Future generation computer systems 97 (2019): 849-872.

source
MetaheuristicsAlgorithms.HOMethod

References:

  • Amiri, M.H., Mehrabi Hashjin, N., Montazeri, M., Mirjalili, S. and Khodadadi, N., 2024.

Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Scientific Reports, 14(1), p.5032.

source
MetaheuristicsAlgorithms.HikingOAMethod

References:

  • Oladejo, Sunday O., Stephen O. Ekwe, and Seyedali Mirjalili.

"The Hiking Optimization Algorithm: A novel human-based metaheuristic approach." Knowledge-Based Systems 296 (2024): 111880.

source
MetaheuristicsAlgorithms.HorseOAMethod

References:

  • MiarNaeimi, Farid, Gholamreza Azizyan, and Mohsen Rashki.

"Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems." Knowledge-Based Systems 213 (2021): 106711.

source
MetaheuristicsAlgorithms.INFOMethod

References:

  • Ahmadianfar, Iman, Ali Asghar Heidari, Saeed Noshadian, Huiling Chen, and Amir H. Gandomi.

"INFO: An efficient optimization algorithm based on weighted mean of vectors." Expert Systems with Applications 195 (2022): 116516.

source
MetaheuristicsAlgorithms.IVYAMethod

References:

  • Ghasemi, Mojtaba, Mohsen Zare, Pavel Trojovský, Ravipudi Venkata Rao, Eva Trojovská, and Venkatachalam Kandasamy.

"Optimization based on the smart behavior of plants with its engineering applications: Ivy algorithm." Knowledge-Based Systems 295 (2024): 111850.

source
MetaheuristicsAlgorithms.JSMethod

References:

  • Chou, Jui-Sheng, and Dinh-Nhat Truong.

"A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean." Applied Mathematics and Computation 389 (2021): 125535.

source
MetaheuristicsAlgorithms.JayaMethod

References:

  • Rao, R.

"Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems." International Journal of Industrial Engineering Computations 7, no. 1 (2016): 19-34.

source
MetaheuristicsAlgorithms.LCAMethod

References:

  • Houssein, Essam H., Diego Oliva, Nagwan Abdel Samee, Noha F. Mahmoud, and Marwa M. Emam.

"Liver Cancer Algorithm: A novel bio-inspired optimizer." Computers in Biology and Medicine 165 (2023): 107389.

source
MetaheuristicsAlgorithms.LFDMethod

References:

  • Houssein, Essam H., Mohammed R. Saad, Fatma A. Hashim, Hassan Shaban, and M. Hassaballah.

"Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems." Engineering Applications of Artificial Intelligence 94 (2020): 103731.

source
MetaheuristicsAlgorithms.LPOMethod

References:

  • Ghasemi, Mojtaba, Mohsen Zare, Amir Zahedi, Pavel Trojovský, Laith Abualigah, and Eva Trojovská.

"Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)." Computer Methods in Applied Mechanics and Engineering 419 (2024): 116582.

source
MetaheuristicsAlgorithms.MPAMethod

References:

  • Faramarzi, Afshin, Mohammad Heidarinejad, Seyedali Mirjalili, and Amir H. Gandomi.

"Marine Predators Algorithm: A nature-inspired metaheuristic." Expert systems with applications 152 (2020): 113377.

source
MetaheuristicsAlgorithms.MRFOMethod

References:

  • Zhao, Weiguo, Zhenxing Zhang, and Liying Wang.

"Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications." Engineering Applications of Artificial Intelligence 87 (2020): 103300.

source
MetaheuristicsAlgorithms.MVOMethod

References:

  • Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Abdolreza Hatamlou.

"Multi-verse optimizer: a nature-inspired algorithm for global optimization." Neural Computing and Applications 27 (2016): 495-513.

source
MetaheuristicsAlgorithms.MossGOMethod

References:

  • Zheng, Boli, Yi Chen, Chaofan Wang, Ali Asghar Heidari, Lei Liu, and Huiling Chen.

"The moss growth optimization (MGO): concepts and performance." Journal of Computational Design and Engineering 11, no. 5 (2024): 184-221.

source
MetaheuristicsAlgorithms.MountainGOMethod

References:

  • Abdollahzadeh, Benyamin, Farhad Soleimanian Gharehchopogh, Nima Khodadadi, and Seyedali Mirjalili.

"Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems." Advances in Engineering Software 174 (2022): 103282.

source
MetaheuristicsAlgorithms.OOAMethod

References:

  • Dehghani, Mohammad, and Pavel Trojovský.

"Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems." Frontiers in Mechanical Engineering 8 (2023): 1126450.

source
MetaheuristicsAlgorithms.PDOMethod

References:

  • Ezugwu, Absalom E., Jeffrey O. Agushaka, Laith Abualigah, Seyedali Mirjalili, and Amir H. Gandomi.

"Prairie dog optimization algorithm." Neural Computing and Applications 34, no. 22 (2022): 20017-20065.

source
MetaheuristicsAlgorithms.PKOMethod

References:

  • Bouaouda, Anas, Fatma A. Hashim, Yassine Sayouti, and Abdelazim G. Hussien.

"Pied kingfisher optimizer: a new bio-inspired algorithm for solving numerical optimization and industrial engineering problems." Neural Computing and Applications (2024): 1-59.

source
MetaheuristicsAlgorithms.PLOMethod

References:

  • Yuan, Chong, Dong Zhao, Ali Asghar Heidari, Lei Liu, Yi Chen, and Huiling Chen.

"Polar lights optimizer: Algorithm and applications in image segmentation and feature selection." Neurocomputing 607 (2024): 128427.

source
MetaheuristicsAlgorithms.POAMethod

References:

  • Trojovský, Pavel, and Mohammad Dehghani.

"Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications." Sensors 22, no. 3 (2022): 855.

source
MetaheuristicsAlgorithms.PROMethod

References:

  • Moosavi, Seyyed Hamid Samareh, and Vahid Khatibi Bardsiri.

"Poor and rich optimization algorithm: A new human-based and multi populations algorithm." Engineering applications of artificial intelligence 86 (2019): 165-181.

source
MetaheuristicsAlgorithms.ParrotOMethod

References:

  • Lian, Junbo, Guohua Hui, Ling Ma, Ting Zhu, Xincan Wu, Ali Asghar Heidari, Yi Chen, and Huiling Chen.

"Parrot optimizer: Algorithm and applications to medical problems." Computers in Biology and Medicine 172 (2024): 108064.

source
MetaheuristicsAlgorithms.PoliticalOMethod

References:

  • Askari, Qamar, Irfan Younas, and Mehreen Saeed.

"Political Optimizer: A novel socio-inspired meta-heuristic for global optimization." Knowledge-based systems 195 (2020): 105709.

source
MetaheuristicsAlgorithms.PumaOMethod

References:

  • Abdollahzadeh, Benyamin, Nima Khodadadi, Saeid Barshandeh, Pavel Trojovský, Farhad Soleimanian Gharehchopogh, El-Sayed M. El-kenawy, Laith Abualigah, and Seyedali Mirjalili.

"Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning." Cluster Computing (2024): 1-49.

source
MetaheuristicsAlgorithms.QIOMethod

References:

  • Zhao, Weiguo, Liying Wang, Zhenxing Zhang, Seyedali Mirjalili, Nima Khodadadi, and Qiang Ge.

"Quadratic Interpolation Optimization (QIO): A new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems." Computer Methods in Applied Mechanics and Engineering 417 (2023): 116446.

source
MetaheuristicsAlgorithms.RBMOMethod

References:

  • Fu, Shengwei, et al.

"Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems." Artificial Intelligence Review 57.6 (2024): 134.

source
MetaheuristicsAlgorithms.RFOMethod

References:

  • Braik, M., & Al-Hiary, H. (2025).

Rüppell’s fox optimizer: A novel meta-heuristic approach for solving global optimization problems. Cluster Computing, 28(5), 1-77.

source
MetaheuristicsAlgorithms.RIMEMethod

References:

  • Su, Hang, Dong Zhao, Ali Asghar Heidari, Lei Liu, Xiaoqin Zhang, Majdi Mafarja, and Huiling Chen.

"RIME: A physics-based optimization." Neurocomputing 532 (2023): 183-214.

source
MetaheuristicsAlgorithms.ROAMethod

References:

  • Jia, Heming, Xiaoxu Peng, and Chunbo Lang.

"Remora optimization algorithm." Expert Systems with Applications 185 (2021): 115665.

source
MetaheuristicsAlgorithms.RSAMethod

References:

  • Abualigah, Laith, Mohamed Abd Elaziz, Putra Sumari, Zong Woo Geem, and Amir H. Gandomi.

"Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer." Expert Systems with Applications 191 (2022): 116158.

source
MetaheuristicsAlgorithms.RSOMethod

References:

  • Dhiman, Gaurav, Meenakshi Garg, Atulya Nagar, Vijay Kumar, and Mohammad Dehghani.

"A novel algorithm for global optimization: rat swarm optimizer." Journal of Ambient Intelligence and Humanized Computing 12 (2021): 8457-8482.

source
MetaheuristicsAlgorithms.RUNMethod

References:

  • Ahmadianfar, Iman, Ali Asghar Heidari, Amir H. Gandomi, Xuefeng Chu, and Huiling Chen.

"RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method." Expert Systems with Applications 181 (2021): 115079.

source
MetaheuristicsAlgorithms.SBOMethod

References:

  • Moosavi, Seyyed Hamid Samareh, and Vahid Khatibi Bardsiri.

"Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation." Engineering Applications of Artificial Intelligence 60 (2017): 1-15.

source
MetaheuristicsAlgorithms.SBOAMethod

References:

  • Fu, Youfa, Dan Liu, Jiadui Chen, and Ling He.

"Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems." Artificial Intelligence Review 57, no. 5 (2024): 1-102.

source
MetaheuristicsAlgorithms.SCAMethod

References:

  • Mirjalili, Seyedali.

"SCA: a sine cosine algorithm for solving optimization problems." Knowledge-based systems 96 (2016): 120-133.

source
MetaheuristicsAlgorithms.SCHOMethod

References:

  • Bai, Jianfu, Yifei Li, Mingpo Zheng, Samir Khatir, Brahim Benaissa, Laith Abualigah, and Magd Abdel Wahab.

"A sinh cosh optimizer." Knowledge-Based Systems 282 (2023): 111081.

source
MetaheuristicsAlgorithms.SFOAMethod

References:

  • Zhong, C., Li, G., Meng, Z., Li, H., Yildiz, A. R., & Mirjalili, S. (2025).

Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers. Neural Computing and Applications, 37(5), 3641-3683.

source
MetaheuristicsAlgorithms.SHOMethod

References:

  • Dhiman, Gaurav, and Vijay Kumar.

"Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications." Advances in Engineering Software 114 (2017): 48-70.

source
MetaheuristicsAlgorithms.SMAMethod

References:

  • Li, Shimin, Huiling Chen, Mingjing Wang, Ali Asghar Heidari, and Seyedali Mirjalili.

"Slime mould algorithm: A new method for stochastic optimization." Future generation computer systems 111 (2020): 300-323.

source
MetaheuristicsAlgorithms.SOMethod

References:

  • Hashim, Fatma A., and Abdelazim G. Hussien.

"Snake Optimizer: A novel meta-heuristic optimization algorithm." Knowledge-Based Systems 242 (2022): 108320.

source
MetaheuristicsAlgorithms.SOAMethod

References:

  • Dhiman, Gaurav, and Vijay Kumar.

"Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems." Knowledge-based systems 165 (2019): 169-196.

source
MetaheuristicsAlgorithms.SSAMethod

References:

  • Mirjalili, Seyedali, Amir H. Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hossam Faris, and Seyed Mohammad Mirjalili.

"Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems." Advances in engineering software 114 (2017): 163-191.

source
MetaheuristicsAlgorithms.STOAMethod

References:

  • Dhiman, Gaurav, and Amandeep Kaur.

"STOA: a bio-inspired based optimization algorithm for industrial engineering problems." Engineering Applications of Artificial Intelligence 82 (2019): 148-174.

source
MetaheuristicsAlgorithms.SeaHOMethod

References:

  • Özbay, Feyza Altunbey.

"A modified seahorse optimization algorithm based on chaotic maps for solving global optimization and engineering problems." Engineering Science and Technology, an International Journal 41 (2023): 101408.

source
MetaheuristicsAlgorithms.SnowOAMethod

References:

  • Deng, Lingyun, and Sanyang Liu.

"Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design." Expert Systems with Applications 225 (2023): 120069.

source
MetaheuristicsAlgorithms.SparrowSAMethod

References:

  • Jiankai Xue & Bo Shen

A novel swarm intelligence optimization approach: sparrow search algorithm Systems Science & Control Engineering, 8:1 (2020), 22-34. DOI: 10.1080/21642583.2019.1708830

source
MetaheuristicsAlgorithms.SuperbFOAMethod

References:

  • Jia, Heming, et al.

"Superb Fairy-wren Optimization Algorithm: a novel metaheuristic algorithm for solving feature selection problems." Cluster Computing 28.4 (2025): 246.

source
MetaheuristicsAlgorithms.SupplyDOMethod

References:

  • Zhao, Weiguo, Liying Wang, and Zhenxing Zhang.

"Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization." Ieee Access 7 (2019): 73182-73206.

source
MetaheuristicsAlgorithms.TLBOMethod

References:

  • Rao, R. Venkata, Vimal J. Savsani, and Dipakkumar P. Vakharia.

"Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems." Computer-aided design 43, no. 3 (2011): 303-315.

source
MetaheuristicsAlgorithms.TLCOMethod

References:

  • Minh, Hoang-Le, Thanh Sang-To, Guy Theraulaz, Magd Abdel Wahab, and Thanh Cuong-Le.

"Termite life cycle optimizer." Expert Systems with Applications 213 (2023): 119211.

source
MetaheuristicsAlgorithms.TOCFunction

References:

  • Braik, M., Al-Hiary, H., Alzoubi, H., Hammouri, A., Azmi Al-Betar, M., & Awadallah, M. A. (2025).

Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems. Artificial Intelligence Review, 58(4), 1-99.

source
MetaheuristicsAlgorithms.TSAMethod

References:

  • Kaur, Satnam, Lalit K. Awasthi, Amrit Lal Sangal, and Gaurav Dhiman.

"Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization." Engineering Applications of Artificial Intelligence 90 (2020): 103541.

source
MetaheuristicsAlgorithms.TTAOMethod

References:

  • Zhao, Shijie, Tianran Zhang, Liang Cai, and Ronghua Yang.

"Triangulation topology aggregation optimizer: A novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications." Expert Systems with Applications 238 (2024): 121744.

source
MetaheuristicsAlgorithms.WHOMethod

References:

  • Naruei, Iraj, and Farshid Keynia.

"Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems." Engineering with computers 38, no. Suppl 4 (2022): 3025-3056.

source
MetaheuristicsAlgorithms.WOMethod

References:

  • Han, Muxuan, Zunfeng Du, Kum Fai Yuen, Haitao Zhu, Yancang Li, and Qiuyu Yuan.

"Wave optimization algorithm: A new metaheuristic algorithm for solving optimization problems." Knowledge-Based Systems 236 (2022): 107760.

source
MetaheuristicsAlgorithms.WOAMethod

References:

  • Mirjalili, Seyedali, and Andrew Lewis.

"The whale optimization algorithm." Advances in engineering software 95 (2016): 51-67.

source
MetaheuristicsAlgorithms.WSOMethod

References:

  • Braik, Malik, Abdelaziz Hammouri, Jaffar Atwan, Mohammed Azmi Al-Betar, and Mohammed A. Awadallah.

"White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems." Knowledge-Based Systems 243 (2022): 108457.

source
MetaheuristicsAlgorithms.WUTPMethod

References:

  • Braik, M., & Al-Hiary, H. (2025).

A novel meta-heuristic optimization algorithm inspired by water uptake and transport in plants. Neural Computing and Applications, 1-82.

source
MetaheuristicsAlgorithms.YDSEMethod

References:

  • Abdel-Basset, Mohamed, Doaa El-Shahat, Mohammed Jameel, and Mohamed Abouhawwash.

"Young's double-slit experiment optimizer: A novel metaheuristic optimization algorithm for global and constraint optimization problems." Computer Methods in Applied Mechanics and Engineering 403 (2023): 115652.

source
MetaheuristicsAlgorithms.ZOAMethod

References:

  • Trojovská, Eva, Mohammad Dehghani, and Pavel Trojovský.

"Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm." Ieee Access 10 (2022): 49445-49473.

source